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A quantity can be a vector only if it obeys the laws of vector addition.
Following are the important properties of vector addition.
(i) Vectors of the same nature alone can be added. A force vector

can be added to force vector only. It cannot be added to displacement
vector.

(ii ) Vector addition is commutative. The sum of the vectors remains
the same in whatever order they may be added.

According to commutative law of vector addition,


a  + 


b  + c


 + ...... = 


b  + 


a  + c


 + ...... = c


 + 


a  + 


b  + ......

The result of vector addition does not depend on the order in which
the vector sum is written.

Proof. Let us prove the commutative property of vector addition in

the case of two vectors 

a  and 


b .

Applying triangle law of vectors to the vector triangle ABC, we get

AC


 = AB


 + BC


          or AC


 = 

a  + 


b                        ...(1)

Fig. 2.1. Commutative property of vector addition
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Again, applying triangle law of vectors to the vector triangle ADC,
we get

AC


 = AD


 + DC


or AC


 = 

b  + 


a  ...(2)

From (1) and (2),

a  + 


b  = 


b  + 


a

(iii ) Vector addition is distributive.
According to distributive law of vector addition,

(

a  + 


b ) = 


a  + 


b

(iv ) Vector addition is associative. The sum of the vectors remains
the same in whatever grouping they are added.

According to associative law of vector addition,

(

a  + 


b ) + c


= 

a  + (


b  + c


)

Proof. Let the three vectors 

a , 


b  and c


 be

represented by PQ


, QS


 and ST


 respectively. There
are two ways to calculate the resultant of these
vectors.

The resultant of 

a  and 


b  is PS


 such that

PS


 = 

a  + 


b

The resultant of (

a  + 


b ) and c


 is PT


 such

that

PT


= (

a  + 


b ) + c


            ...(1)

Again, if we add 

b  and c


, we get QT


 such that QT


 = 


b  + c



The resultant of 

a  and (


b  + c


) is PT


 such that

PT


= 

a  + (


b  + c


) ...(2)

Fig. 2.2. Associative
law of vector addition
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From equations (1) and (2), (

a  + 


b ) + c


 = 


a  + (


b  + c


) which

proves the associative law of vector addition.
In terms of order and grouping, the rules for vector addition are the

same as those of scalar addition.

Resolution of a vector is the process of splitting the vector into two or
more vectors in different directions which together produce the same
effect as is produced by the given vector.

The vectors into which the given vector is splitted are called
component vectors.

Consider two non-zero vectors 

a

and 

b  in a plane [Fig. 2.3]. Let A


 be

any other vector in this plane. Through
the tail (P) of A


, draw a straight line

parallel to 

a .

Similarly, draw a straight line,

parallel to 

b , through the terminal

point (Q) of A


. Let both the lines
intersect at C.

Applying triangle law of vectors, A


 = PC


 + CQ


...(1)

As per the geometrical construction, PC


 = 

a  where  is a real

number. In the given case,  is positive which indicates that PC


 is in

the direction of 

a . If  were negative, then PC


 would have been

opposite to 

a .

Similarly, CQ


= 

b , where  is another real number.

From equation (1), A


 = 

a  + 


b

So, A


 has been resolved along 

a  and 


b .

Fig. 2.3
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It may be noted that A


 determines  and  unambiguously. The
converse is also true, i.e., each vector A


 in a plane is completely

described or determined by a pair of real numbers , . The uniqueness
of the resolution procedure is proved below.

Let us assume that there are two ways of resolving A


 along 

a  and


b  such that


a = 


a  + 


b  = 


a  + 


b

 ( – ) 

a  = ( – )


b

But 

a  and 


b  are different vectors.

So, the above equation is satisfied only if 

a  =


b  = 0



.

Thus, there is one and only one way in which a vector A


 can be

resolved along 

a  and 


b . However, it may be pointed out here that a

vector may be resolved into an infinite number of components. The
reverse process, i.e., the sum of the components will of course yield
only the given vector.

In Fig. 2.4, the resolution of a position vector OP


 has been shown.

Applying parallelogram law of vectors, we can prove that 

a  and



b  are actually the components of OP


.

OQ


 = a

 ,  OR


 = b




Fig. 2.4. Resolution of vector

When a vector is splitted into two component vectors at right angles to
each other, the component vectors are called the rectangular
components of the given vector.
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Consider a vector A


 represented by OP


.
Through the point O, draw two mutually
perpendicular axes—X-axis and Y-axis. Let
the vector A


 make an angle  with the

X-axis. From the point P, drop a
perpendicular PM on X-axis.

Now OM


( )


A x  is the resolved part of

A


 along X-axis. It is also known as the

x-component of A


 or the horizontal

component of A


. Ax



 may be regarded as the projection of A


 on
X-axis.

ON


 (= Ay



) is the resolved part of A


 along Y-axis. It is also known as

the y-component of A


 or the vertical component of A


. The vertical

component of A


 may be regarded as the projection of A


 on Y-axis.

So, Ax



 and Ay



 are the rectangular components of A


.

Applying triangle law of vectors to the vector triangle OMP, we get

Ax



+ Ay



 = A


This equation confirms that Ax



 and Ay



 are the components of A


.

In right-angled triangle OMP,

cos  = 
A
A

x or  Ax = A cos  ...(1)

sin  = 
A
A

y or  Ay = A sin  ...(2)

Squaring and adding (1) and (2), we get

Ax
2 + Ay

2 = A2 cos2  + A2 sin2 

or Ax
2 + Ay

2 = A2 (cos2  + sin2 )

 Ax
2 + Ay

2 = A2 [ cos2  + sin2  = 1]

Y

M

Ay
A Ay

Ax
O M X

P

Fig. 2.5. Resolution of a vector
into two rectangular components
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or A = 2 2A Ax y

This equation gives the magnitude of the given vector in terms of
the magnitudes of the components of the given vector.

Fig. 2.6 shows position vector r


represented by OP.


 Draw PM  X-axis and

PN  Y-axis. ˆOM x i


  and ˆON .y j




According to parallelogram law of vector
addition,

OP


= OM ON
 



or r


= ˆ ˆxi y j

Let  be the angle made by r


 with
X-axis.

Then x = r cos  and y = r sin 

r


   or r = 2 2x y

An example of ‘resolution of a vector’ is
‘walk of a man’. When a man walks, he
presses the ground slantingly in the
backward direction with a force F. The
ground offers an equal reaction R in the
opposite direction. The vertical component
V of this reaction balances the weight of the
man. The horizontal component H helps the
man to walk.

j

Fig. 2.6. Resolution of
position vector

V R 

F 

H

Fig. 2.7. Walk of a man



Physics—XI38

Consider two points P and Q having co-ordinates (x1, y1) and (x2, y2)
respectively with reference to the origin O of the co-ordinate system.

Let us first consider the position vector 1r


 which makes angle 1 with
X-axis.

Now, 1r


= 
1x


 + 
1y


 = 1
ˆx i  + 1

ˆy j

x1 = r1 cos 1, y1 = r1 sin 1

r1
2 = x1

2 + y1
2, tan 1 = 1

1

y
x

Again, (x2 – x1) and (y2 – y1) are the

components (in magnitude) of PQ


. Here,

y2 – y1 is negative. [Note that PQ


 is directed
from upper left to lower right.]

Let us now add the components of OP


 to

the components of PQ


.

Then,  x1 + (x2 – x1)= x2 , y1 + (y2 – y1) = y2

This gives us the components of OQ


.

So, we conclude that the rule for addition of vectors can be broken
down into two ordinary algebraic additions, one along each of the chosen
axes. This directly implies that motion along a curve in a plane can be
regarded as the sum of the independent linear motions, one along the
X-axis and the other along Y-axis. The two linear motions may be treated
separately and the results may be combined at the end.

Let a vector A


 be represented by OP


 as shown in Fig. 2.9. With O
as origin, construct a rectangular parallelopiped with three edges along

Fig. 2.8
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the three rectangular axes which
meet at O. A


 becomes the diagonal

of the parallelopiped. Ax



, Ay



 and
Ay



 are three vector intercepts along
x, y and z axes respectively. These
are the three rectangular
components of A


.

Applying triangle law of vectors,

OP


 = OK


 + KP


Applying parallelogram law of

vectors, OK


 = OT


 + OQ


 OP


= OT


 + OQ


 + KP


But KP


= OS


 OP


= OT


 + OQ


  + OS


A


= Az



 + Ax



 + Ay



or  A


= Ax



 + Ay



 + Az



or A


= Ax i


 + Ay j


 + Az k


Again, OP2 = OK2 + KP2

OP2 = OQ2 + QK2 + KP2

or OP2 = OQ2 + OT2 + KP2 [ QK = OT]
or A2 = Ax

2 + Az
2 + Ay

2 [ KP = OS = Ay]
or A2 = Ax

2 + Ay
2 + Az

2

or A = 2 2 2A A Ax y z 

This gives the magnitude of A


 in terms of the magnitudes of

components Ax



, Ay



 and Az



.

S

P

Q

KT

O

Ax


A


Ay


Az

Fig. 2.9. Resolution of a vector into three
rectangular components
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(a) The rotational analogue of force is moment of force. It is also referred
to as torque. This quantity measures the turning effect of a force.

The torque (or moment of force) about an axis of rotation is a
vector quantity, whose magnitude is equal to the product of magnitude of
force and the perpendicular distance of the line of action of force from
the axis of rotation and its direction is perpendicular to the plane
containing the force and perpendicular distance.

Fig. 2.10 shows a force F


 applied on a rigid
body. The body is free to rotate about an axis
passing through a point O and perpendicular
to the plane of paper. If d is the perpendicular
distance of the line of action of force from the
point O, then the torque  about the axis of
rotation is :  = Fd.

The symbol  stands for the Greek letter tau.
The torque is taken as positive if it tends to rotate the body

anticlockwise. If the torque tends to rotate the body clockwise, then it
is taken as negative.

The SI unit of torque is N m. Its dimensional formula is [ML2T–2].
The dimensions of torque are the same as those of work or energy.

It is, however, a very different physical quantity than work. Moment of
force is a vector, while work is a scalar.

(b) Torque in Vector Notation. If a
force F



 acts on a single particle at a
point P whose position with respect to
the origin O is given by the position
vector r



, then the moment of force,
acting on the particle, with respect to
the origin O is given by

 


  = r


 × F


The direction of 


  is perpendicular

to the plane of r


 and F


. Its direction is given by right-handed screw
rule or right-hand thumb rule.

Fig. 2.10

Fig. 2.11
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The magnitude of 


  is given by  = rF sin  ...(1)

where r is the magnitude of the position vector r


 i.e., the length OP, F

is the magnitude of the force F


 and  is the angle between r


 and F


.

Now, sin  = 
d
r  or d = r sin 

From = n(1),  = F (r sin ) = Fr

 = Fd

Again  = r (F sin ) = r F

 = r F



(i) If r = 0, then  = 0. Clearly, a force has no torque if it passes
through the point O about which torque is to be calculated. This explains
as to why we cannot open or close a door by applying force at the
hinges of the door.

(ii) If  = 0° or 180°, then sin  = 0.
 t = r F sin  =

0
In this case, the line of action of

the force passes through point O. Thus,
if the line of action of force passes
through point O, the torque is zero.

(iii) If  = 90°, then sin  = sin 90° =
1 (max. value). So,  is maximum.

max. = r F
This explains as to why a handle is

fixed perpendicular to the plane of door.

A couple is a set of two equal (in magnitude), opposite (in direction)
forces having different lines of action. A couple produces rotation without
translation.

Properties of a Couple. (a) A couple produces or tends to produce
only the rotational motion. (b) A couple cannot be replaced by a single
force. (c) A couple can be shifted anywhere in its plane of action.

Fig. 2.12
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Torque is the turning effect produced by
a single force. Couple is only a set of two equal
(in magnitude), opposite (in direction) and
parallel forces having different lines of action.

Moment of Couple. It is the rotational
effect produced by a couple. It is a vector
quantity. Its units and dimensions are the

same as those of 


 .

Expression for Moment of Couple. Let
OX, OY and OZ be the three mutually
perpendicular axes. Let two equal (in
magnitude) and opposite (in direction) forces, – F



 and F


 act at P and Q
respectively in the XOZ plane. The position vectors of P and Q with

reference to origin O are given by 1r


 and 2r


 respectively.

Moment of force – F


 about O, 1



  = 1r


  (– F


) = – 1r


  F


Moment of force F


 about O, 2



  = 2r


  F


Applying the right-hand rule for
the cross product of vectors, we find

that 1



  acts along the negative

direction of Y-axis and 2



  acts along
the positive direction of Y-axis as
shown in Fig. 2.14.

The moment of the couple C


 is

vector sum of 1r


 and 2r


.

 C


 = 1



  + 2





                    = – 1r


  F


 + 2r


  F


 = 2r


  F


 – r1   F


or C


= ( 2r


 – 1r


)  F


Fig. 2.13. The Earth’s
magnetic field exerts equal and
opposite forces on the poles
of a compass needle. These
two forces form a couple

Y


2


1

O

Z

X
r2


r2


r


r1


r1


F


– F

QP

Fig. 2.14. Moment of couple
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Applying triangle law of vectors to the vector triangle OPQ, we get

1r


 + r


= 2r


               or   2r


 – 1r


 = r


 C


= r


  F


The vector r


 lies in the plane of the two forces, i.e., the plane XOZ.

C


 is perpendicular to this plane.

Fig. 2.15. Our fingers apply a couple to turn the lid

Consider a rigid body which is capable of rotation about an axis
through a point O of the rigid body and perpendicular to the plane of
the paper.

Consider a point P such that the
position vector of P with respect to O is r



[Fig. 2.16]. Suppose an external force F


is applied at the point P as shown. Let the
body turn through an infinitesimally small
angle d in a short time dt so that P moves
to new position P such that PP


  = ds


.

*In magnitude, ds = r d ...(1)
Work dW done in rotating the body

through a small angle d is given by

dW = F


 . ds


 = Fds cos 

d

ds

r

P


90° – 
r P

O


Fs


F

Fig. 2.16. Work done in rotational
motion

* ...  = l
r
 l = r 

Here, l is the length of an arc of a circle of radius r,  is the angle subtended by
the arc at the centre of circle.
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where  is the angle between F


 and ds


.

Now, dW =  (F  co s ) ds = Fs r d [From (1)]

where Fs (= F cos ) is the component of F


 in the direction of ds


 . Fs


 is

perpendicular to r


.

Again, dW = (F cos ) r d = (r F cos ) d

But rF cos  = rF sin (90° – ) = | F|r
 

  = |

 | = 

where (90° – ) is the angle between r


 and F


.

  is the moment of F



about O.

 d W = 

  . d




Both 

  and d


  act in the same direction. So, the angle between

them is 0°.
 dW = d

Wdò = 
0

d


 ò or W =  
0

( 0)d


    -  ò

or W = 

Here it is assumed that  is constant. Thus, the work done in rotating
the body through a given angle is equal to the product of the torque
and the angular displacement of the body.

Power, P = 
Wd

dt  = 
d
dt  ()

or P =  
d
dt  ()           or P = 

Note that  is being assumed as a constant.

A rigid body is said to be in mechanical equilibrium if both its
linear momentum and angular momentum are not changing with time,
or equivalently the body has neither linear acceleration nor angular
acceleration.
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A rigid body such as a chair, a bridge or building is said to be in
equilibrium if both the linear momentum and the angular momentum
of the rigid body have a constant value. When a rigid body is in
equilibrium, the linear acceleration of its centre of mass is zero. Also,
the angular acceleration of the rigid body about any fixed axis in the
reference frame is zero.

For the equilibrium of a rigid body, it is not necessary that the rigid
body is at rest. However, if the rigid body is at rest, then the equilibrium
of the rigid body is called static equilibrium.

(i) First Condition for Equilibrium.  The translational motion of
the centre of mass of a rigid body is governed by the following equation:

 .Fext
 = 

d
dt  ( p )

Here   
.Fext  is the vector sum of all the external forces that act on

the rigid body.

For equilibrium, p  must have a constant value.


d
dt ( p ) = 0

 


.Fext = 0

This vector equation is equivalent to three scalar equations:

1
F 0

n

ix
i 

 , 
1

F 0
n

iy
i 

 , 
1

F 0
n

iz
i 

                       ...(1)

This leads us to the first condition for the equilibrium of rigid
bodies.

“The vector sum of all the external forces acting on the rigid
body must be zero”.

(ii) Second Condition for Equilibrium. The rotational motion of a
rigid body is governed by the following equation:

 .ext

 = 


d
dt
L

Here  .ext

  represents the vector sum of all the external torques

that act on the body.
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For equilibrium, L


 must have a constant value.


d
dt  ( L


) = 0

  .ext

 = 0

This vector equation can be written as three scalar equations:

                  
1

0
n

ix
i 

  , 
1

0
n

iy
i 

  , 
1

0
n

iz
i 

                     ...(2)

This leads us to the second condition for the equilibrium of rigid
bodies.

“The vector sum of all the external torques acting on the rigid
body must be zero.”

The second condition for equilibrium is independent of the choice
of the origin and the co-ordinate axes used for calculating the
components of torques. If the net torque is zero, then its components
are zero for any choice of x, y and z axes.

A body may be in partial equilibrium i.e., it may be in translational
equilibrium and not in rotational equilibrium or it may be in rotational
equilibrium and not in translational equilibrium.

Consider a light (i.e., of negligible
mass) rod (AB), at the two ends
(A and B) of which two parallel forces
both equal in magnitude are applied
perpendicular to the rod as shown
in Fig. 2.17.

Let C be the midpoint of AB. CA
= CB = a. The moments of the forces at A and B, about C, will both be
equal in magnitude (aF), but opposite in sense as shown. The net
moment on the rod will be zero. The system will be in rotational
equilibrium, but it will not be in translational equilibrium: F  0.

The force at B in Fig. 2.17 is reversed in Fig. 2.18. Thus, we have
the same rod with two equal and opposite forces applied perpendicular
to the rod, one at end A and the other at end B. Here the moments of

Fig. 2.17
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both the forces are equal, but they
are not opposite; they act in the
same sense and cause anticlockwise
rotation of the rod. The total force
on the body is zero; so the body is
in translational equilibrium; but it
is not in rotational equilibrium.
Although the rod is not fixed in any
way, it undergoes pure rotation (i.e.,
rotation without translation).

An ideal lever is essentially a light
(i.e., of negligible mass) rod pivoted at a
point along its length. This point is
called the fulcrum. A see-saw on the
children’s playground is a typical
example of a lever. Two forces F1 and F2,
parallel to each other and usually
perpendicular to the lever, act on the lever at distances d1 and d2
respectively from the fulcrum as shown in Fig. 2.19.

Let R be the reaction of the support at the fulcrum. For translational
equilibrium,

R – F1 – F2 = 0                                   ...(1)
For considering rotational equilibrium, we take the moments about

the fulcrum ; the sum of moments must be zero.
F1d1 – F2d2 = 0      ...(2)

Normally the anticlockwise (clockwise) moments are taken to be
positive (negative). Note R acts at the fulcrum itself and has zero moment
about the fulcrum.

In the case of the lever, force F1 is usually some weight to be lifted.
It is called the load and its distance from the fulcrum d1 is called the
load arm. Force F2 is the effort applied to lift the load ; distance d2 of
the effort from the fulcrum is the effort arm.

Fig. 2.18

Fig. 2.19
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Eq. (2) can be written as
F1d1 = F2d2

or load × load arm = effort × effort arm
The above equation expresses the principle of moments for a lever.

Incidentally the ratio F1/F2 is called the Mechanical Advantage (M.A.);

M.A. = 1

2

F
F  = 

2

1

d
d

If the effort arm d2 is larger than the load arm, the mechanical
advantage is greater than one. Mechanical advantage greater than one
means that a small effort can be used to lift a large load.

The centre of gravity of a body is a
point where the weight of the body acts
and total gravitational torque on the body
is zero.

Consider an irregular-shaped
cardboard and a narrow tipped object
like a pencil. By trial and error, we can
locate a point G on the cardboard where
it can be balanced on the tip of the
pencil. (The cardboard remains
horizontal in this position.) This point of
balance is the centre of gravity (CG) of
the cardboard. The tip of the pencil
provides a vertically upward force due to
which the cardboard is in mechanical
equilibrium. As shown in Fig. 2.20, the reaction of the tip is equal and

opposite to Mg


, the total weight of (i.e., the force of gravity on) the
cardboard and hence the cardboard is in translational equilibrium. It is
also in rotational equilibrium; if it were not so, due to the unbalanced
torque it would tilt and fall. There are torques on the cardboard due to

the forces of gravity like 1m g


, 2m g


 ...... etc., acting on the individual
particles that make up the cardboard.

Fig. 2.20. Balancing a cardboard
on the tip of a pencil. The point of
support G is the centre of gravity
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The CG of the cardboard is so located that the total torque on it due

to the forces 1m g


, 2m g


 ...... etc. is zero.

If ir


 is the position vector of the ith particle of an extended body
with respect to its CG, then the torque about the CG, due to the force

of gravity on the particle is i


  = ir


 × im g


. The total gravitational torque

about the CG is zero, i.e., g


  =  i


  =  ir


 × im g


 = 0      ...(1)

We may therefore, define the CG of a body as that point where the
total gravitational torque on the body is zero.

In Eq. (1), g


 is the same for all particles, and hence it comes out of

the summation. This gives, since g


 is non-zero,

mi ir


 = 0. The position vectors ( ir


) are taken with respect to the
CG. So, the origin must be the centre of mass of the body. Thus, the
centre of gravity of the body coincides with the centre of mass in uniform
gravity or gravity-free space.

Something is in equilibrium when both the resultant force and
resultant turning moment on it are zero.

Following are the three types of translational static equilibrium of a
body.

(i) When potential energy is minimum, the particle is said to be
in stable equilibrium.

Any displacement of the particle from the equilibrium position will
result in a restoring force. This restoring force shall try to return the
particle to the equilibrium position.

If a body is in stable equilibrium, work must be done on it by an
external agent to change its position. This results in an increase in its
potential energy.

Consider a cube at rest on one face on a horizontal table. Fig. 2.21
shows the central cross-section of the cube. The centre of gravity is
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shown at the centre of this cross-section.
Suppose a force F is applied to the cube so
as to rotate it without slipping about an axis
along an edge. The centre of gravity of the
cube will be raised. Moreover, work is done
on the cube. This increases the potential
energy of the cube. If the force is removed,
the cube tends to return to its original
position. This initial position is clearly a stable equilibrium position.

(ii) When the potential energy of a system is maximum, the
system is in unstable equilibrium.

Any displacement from ‘unstable
equilibrium position’ will result in a force
tending to push the system farther from the
‘unstable equilibrium position’. No work is
required to be done on the system by an
external agent to change the position of the
system. The displacement results in a
decrease in the potential energy of the system.

A cube balanced on an edge can be considered in unstable
equilibrium if a horizontal force is applied perpendicular to the edge.
But the cube is in stable equilibrium with respect to a horizontal force
parallel to the edge.

(iii) When the potential energy of a system is constant, the
system is said to be in neutral
equilibrium.

When the system is displaced slightly,
there is neither a repelling nor a restoring
force.

A sphere (say, a football) on a
horizontal table is a good illustration of
neutral equilibrium. If a horizontal force
is applied on the sphere, the centre of
gravity of the sphere is neither raised nor lowered. The centre of gravity
moves along the dashed line in Fig. 2.23. The potential energy of the
sphere remains constant during displacement.

Fig. 2.21. Stable equilibrium

Fig. 2.22. Unstable equilibrium

Fig. 2.23. Neutral equilibrium
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The centre of mass of a body is a point
where the whole mass of the body is
supposed to be concentrated for describing
its translatory motion.

The centre of mass of a system of
particles is that single point which moves
in the same way in which a single particle
having the total mass of the system and
acted upon by the same external force
would move.

The centre of mass of a system is only
a point defined mathematically for the sake
of convenience. It is not necessary that the
total mass of the system be actually present at the centre of mass. As
an example, centre of mass of a uniform circular ring is at the centre of
the ring where there is no mass.

It may be noted that it is not necessary that there may be a material
particle at the centre of mass of the system. But we can always calculate
the position of the centre of mass at each time.

(i) For a two-particle system, the centre of mass always lies between

the two particles and on the line joining them. In-fact R


 is a weighted

average i.e., each particle makes a contribution proportional to its mass.
(ii) When the two particles are of equal masses i.e., m1 = m2 = m(say),

then

R


= 
2 2 1 2

2
m r m r r r

m m

   

 




So, the centre of mass of two particles of equal masses lies exactly
midway between them.

Friction is the retarding force which is called into play when a
body actually moves or tends to move over the surface of another body.

Y

X

Z

O

m1

m2

Centre
of mass

 r (
t)

1

r (t)2

R(t)

Fig. 2.24. Centre of mass of a
two-particle system
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Consider a block of mass m which is projected with initial velocity v
along a long horizontal table. The block will finally come to rest. This
means that while it is moving, it experiences an opposing force that
points in a direction opposite to its motion. This opposing force is called
force of friction.

Whenever the surface of one body slides over that of another, each
body exerts a frictional force on the other. The frictional force on each
body is in a direction opposite to its motion relative to the other body.
Frictional forces always oppose relative motion and never help it. Even
when no relative motion is actually present but there is only a
tendency for relative motion, frictional forces exist between surfaces.

Friction is very important in our daily lives. Left to act alone, it
brings every moving body to a stop. In an automobile, nearly 20% of the
engine power is used to counteract frictional forces. Friction causes
wear and tear of the moving parts and many engineering man-hours
are devoted to reducing it. On the other hand, without friction, we
could not walk, we could not hold a pen and if could it would not write;
wheeled transport as we know it would not be possible.

Consider a block at rest on a horizontal table. We find that the
block will not move even though we apply a small force [Fig. 2.25(1)].
The applied force is clearly balanced by an opposite frictional force
exerted on the block by the table, acting along the surface of contact.
As the applied force is gradually increased, the frictional force fs also
increases [Figs. 2.25(2) and 2.25(3)]. This indicates the self-adjusting
nature of the frictional force.

        

             Fig. 2.25 (1)      Fig. 2.25 (2) Fig. 2.25 (3)

The frictional forces acting between surfaces at rest with respect to
each other are called forces of static friction.

As we continue to increase the applied force, we find some definite
force at which the block just begins to move [Fig. 2.25(4)]. At this stage,
the maximum force of static friction acts. The maximum force of static
friction will be the same as the smallest force necessary to start motion.
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Once motion is started, the frictional force decreases so that a smaller
force is necessary to maintain uniform motion [Fig. 2.25 (5)]. The forces
acting between surfaces in relative motion are called forces of kinetic friction.

If the applied force is greater than the force of kinetic friction, then
the block has accelerated motion [Fig. 2.25 (6)].

      

             Fig. 2.25 (4)       Fig. 2.25 (5)   Fig. 2.25 (6)

It is the force of friction which exactly balances the applied force
during the stationary state of the body. This frictional force exists when
the bodies in contact are at rest with respect to each other. The force of
static friction is a self-adjusting force i.e., it adjusts its magnitude and
direction so as to become exactly equal and opposite to the applied
pull. The direction of the force of friction remains always opposite to
the direction of the applied force.

Consider a block resting on a horizontal
surface [Fig. 2.26]. Let a small pull P be
applied on the body as shown. Let fs be the
resulting force of static friction. In the
equilibrium position, the weight W of the body
will be balanced by the normal reaction R.
And the applied pull P will be balanced by
the frictional force fs.

In vector notation, W


 = – R


and P


 = – sf


Limiting friction is the maximum value of static friction which is
called into play when a body is just going to start sliding over the surface
of another body.

Fig. 2.26.  Static friction
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When the applied pull P is increased, the static frictional force fs
also increases. However, there is a particular limit upto which the static
frictional force fs can increase. Beyond this limit, the applied pull P will
be able to produce motion in the body.

Following are the laws of limiting friction:
I. The direction of the force of limiting friction is always opposite to

that in which the motion tends to take place.
II. The limiting friction acts tangentially to the two surfaces in contact.
III. The magnitude of the limiting friction is directly proportional to

the normal reaction between the two surfaces.
IV. The limiting friction depends upon the material and the nature of

the surfaces in contact and their state of polish.
V. For any two given surfaces, the magnitude of the limiting friction

is independent of the shape or the area of the surfaces in contact so long
as the normal reaction remains the same.

Experimental Verification. Consider a
wooden block placed on a horizontal
surface. It is attached to a string which
passes over a frictionless pulley carrying a
scale pan at the free end [Fig. 2.27]. Add
weights in the scale pan till wooden block
just starts sliding. It is evident that the force
of friction was opposing the motion. This
verifies law I.

The force of friction f acts along the
horizontal surface. This verifies law II.

When the block just starts sliding, the
total weight added in the scale pan along with the weight of the scale
pan is equal to the limiting friction. The normal reaction R is equal to
the weight mg of the block. Now, put some known weight on the block.
Determine the limiting friction again. It will be observed that the ratio
of limiting friction and normal reaction is constant. In other words, the

Fig. 2.27. Experimental
verification of the laws of

limiting friction
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limiting friction is proportional to the normal reaction R. This verifies
law III.

Let the wooden block be replaced by glass block of the same weight
mg. It will be observed that the limiting friction will be different in this
case. This verifies law IV.

If the wooden block is placed on its side instead of on its base, it will
be observed that same force is required to move the block as when it
was placed on its base. This verifies law V.

Dynamic or kinetic friction comes into play if the two bodies in
contact are in relative motion. It acts in a direction opposite to the
direction of the instantaneous velocity.

The dynamic or kinetic friction is of the following two types :
(i ) Sliding friction. It comes into play when a solid body slides over

the surface of another body.
(ii ) Rolling friction. It comes into play when a body rolls over the

surface of another body.

(i ) The sliding friction opposes the applied force and has a constant
value, depending upon the nature of the two surfaces in relative motion.

(ii ) The force of sliding friction is directly proportional to the normal
reaction R.

(iii ) The sliding frictional force is independent of the area of the
contact between the two surfaces so long as the normal reaction remains
the same.

(iv ) The sliding friction does not depend upon the velocity, provided
the velocity is neither too large nor too small.

It is illustrated graphically in Fig. 2.28. When there is no relative
motion between the two bodies in contact, the frictional force increases
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at the same rate as the applied
force.

If ON' is the applied force, then ON
is the frictional force such that

ON' = ON
The slope of the curve Oa is

constant and is equal to unity.
When the applied force is equal to

Od, the static frictional force becomes
maximum. So, ad represents the limiting friction. When the applied
pull exceeds the value Od, the body begins to move. At this stage, the
frictional force suddenly decreases by a small amount and acquires a
constant value ce. This value represents the dynamic or kinetic or sliding
frictional force.

For any two surfaces in contact, it is the ratio of the limiting friction
fms and the normal reaction R between them. It is denoted by s.

s = R
msf

Since s is a pure ratio therefore it has no units. The value of s
depends upon the state of polish of the two surfaces in contact. If the
surfaces are smooth, the value of s is small.

The force of static friction fs is equal to the applied force. So, fs can
have any value from 0 to fms .

 fs  fms

[The equality sign holds only when fs has its maximum value.]

                            Rs sf  

It is defined as the ratio of kinetic friction and normal reaction. It is
denoted by k.

Applied force
d e

NO

N P
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e 
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Fig. 2.28. Variation of frictional force
with the applied force
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 k = R
kf

Now,
s

k




= R

msf
  

R

kf
 = 

ms

k

f
f

But fms > fk

 s > k

It is the angle which the resultant of the force of limiting friction msf


and the normal reaction R


 makes with the normal reaction R


.

Consider a block of weight W


 resting

on a horizontal surface. The weight W


 will

be balanced by the normal reaction R


[Fig. 2.29].

In vector notation, W


 = – R


 (Newton’s
3rd law of motion)

Now, apply a horizontal force P


 of such
a magnitude that the block is about to move. Then, CB will represent
the maximum force of static friction i.e., limiting friction. The resultant
of the limiting friction and the normal reaction is represented by the
diagonal CL of the parallelogram CBLA. The angle  which the resultant
makes with the normal reaction is called the angle of friction.

In CAL, tan  = 
AL CB
CA CA

  = R
msf

But R
msf

= s     (definition of coefficient of friction)

 tan  = s

So, the tangent of the angle of friction is equal to the coefficient of
static friction.

Fig. 2.29. Angle of friction
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When a body rolls or tends to roll over the surface of another body,
then both the rolling body and the surface on which it rolls are
compressed by a small amount. As a result, the rolling body has to
continuously climb a hill as shown [Fig. 2.30]. Apart from this, the
rolling body has to continuously detach
itself from the surface on which it rolls.
This is opposed by the adhesive force
between the two surfaces in contact. On
account of both these factors, a force
originates which retards the rolling
motion. This retarding force is called the
rolling friction. It is denoted by fr .

Laws of rolling friction. The following laws of rolling friction are
based on experiments.

 (i ) Rolling friction is directly proportional to normal reaction.
fr  R

(ii ) Rolling friction is inversely proportional to the radius of the
rolling body.

fr   
1
r

Combining the two laws, we get

fr 
R
r

or fr = r  
R
r           ...(1)

where r is the coefficient of rolling friction, R is the normal reaction
and r is the radius of the rolling body.

Comparison. For the same magnitude of normal reaction, the sliding
friction is much greater than the rolling friction. That is why we prefer
to convert sliding friction into rolling friction. The ball and roller bearings
make use of this principle.

Fig. 2.30. Cause of rolling friction
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Illustration. The sliding friction of steel on steel is 100 times more
than the rolling friction of steel on steel.

 (i ) Without friction between our feet and the ground, it will not be
possible to walk. When the ground becomes slippery after rain, it is
made rough by spreading sand, etc.

 (ii) The tyres of the vehicles are made rough to increase friction.
(iii) Various parts of a machine are able to rotate due to friction

between belt and pulley.

 (i) Wear and tear of the machinery is due to friction.
(ii ) Friction between different parts of the rotating machines

produces heat and causes damage to them.
(iii) We have to apply extra power to machines in order to overcome

friction. Thus, the efficiency of the machines decreases.

(i ) Polishing. The interlocking and the projections between the two
surfaces are minimised and therefore the friction is reduced. This makes
their life long.

(ii ) Lubrication. A lubricant is a substance (a solid or a liquid) which
forms thin layer between the two surfaces in contact. It fills the
depressions present in the surfaces of contact and hence friction is
reduced.

(iii ) Streamlining. When a body moves past a fluid (liquid or air),
the particles of the fluid move past it in regular lines of flow called
streamlines. It is found that the resistance offered by the fluid to the
body is minimum when its shape resembles that of streamlines. Thus
the shape of automobiles is so designed that it resembles the streamline
pattern and the resistance offered by the fluid is minimum.
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(iv ) Avoiding moisture. When the moisture
is present, the friction is more. So, we must
avoid moisture between the two surfaces.

(v) Use of alloys. Friction is reduced by
lining the moving parts with alloys because
alloys have low coefficients of friction.

(vi) Use of ball-bearings or roller-bearings.
The rolling friction is much less than the sliding
friction. So, we convert sliding friction into
rolling friction. Even the axle is not allowed to
move directly in the hub. The friction is further
minimised by the use of roller-bearings or ball-bearings [Fig. 2.31].

Suppose a force P is applied to pull a
block of weight W [Fig. 2.32]. The force P
can be resolved into two rectangular
components : P cos  and P sin .

If R be the normal reaction, then
R = W – P sin 

Force of kinetic friction,
f k = kR

or f k = k (W – P sin )
               ...(1)

If a force P is applied to push a block of
weight W [Fig. 2.33], then
normal reaction,

R = W + P sin 
force of kinetic friction,fk= k R
or fk = k (W + P sin )

                  ...(2)
Comparing (1) and (2), we find that

fk > fk
So, the frictional force is more in the case of push.
Hence, it is easier to pull than to push a body.

Fig. 2.31. Ball-bearings

Fig. 2.32. Pulling a block

Fig. 2.33. Pushing a block
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Do the review exercises in your notebook.

1. A circular disk of radius R is made from an iron plate of thickness
t and another disc Y of radius 4R is made from an iron plate of

thickness 
4
t

. Then the relation between the moments of inertia IX

and IY is
(a) IY = IX (b) IY = 64 IX
(c) IY = 32 IX (d) IY = 16 IX.

2. A thin circular ring of mass M and radius r is rotating about its
axis with a constant angular velocity . Four objects, each of mass
m, are kept gently on the opposite ends of two perpendicular
diameters of the ring. The angular velocity of the ring will be

(a)
M
4m


(b)
M
4m


(c)
(M 4 )

M
m 

(d)
(M 4 )

M + 4
m
m

- 
.

3. One end of a thin uniform rod of length L and mass M1 is riveted
to the centre of a uniform circular disc of radius r and mass M2 so
that both are coplanar. The centre of mass of the combination
from the centre of the disc is (assume that the point of attachment
is at the origin)

(a) 1 2

1

L (M M )
2M


(b)
1

1 2

LM
2(M M )

(c)
1 2

1

2(M M )
LM


(d)
1

1 2

2LM
(M M )

.

4. Two circular loops A and B of radii rA and rB respectively are made
from the same uniform wire. The ratio of their moments of inertia
about axes passing through their centres and perpendicular to
their planes is IB/IA = 8. Then (rB/rA ) =
(a) 2 (b) 4
(c) 6 (d) 8.

5. Consider a body, shown in figure, consisting of two identical balls,
each of mass M connected by a light rigid rod. If an impulse
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J = MV is imparted to the body at one of its ends, what would be
its angular velocity?

(a) V/L (b) 2V/L
(c) V/3L (d) V/4L.

6. A turntable rotates about a vertical axis with a constant angular
speed . A circular pan rests on the turntable and rotates along
with the table. The bottom of the pan is covered with a uniform
thick layer of ice which also rotates with the pan. The ice starts
melting. The angular speed of the turntable
(a) decreases (b) increases
(c) remains the same as  (d) data insufficient.

7. Water is poured from a height of 10 m into an empty barrel at the
rate of 1 litre per second. If the weight of the barrel is 10 kg, the
weight indicated at time t = 60 s will be
(a) 71.4 kg (b) 68.6 kg
(c) 70.0 kg (d) 84.0 kg.

8. A force of 200 N is required to push a car of mass 500 kg slowly at
constant speed on a level road. If a force of 500 N is applied, the
acceleration of the car (in m s–2) will be
(a) zero (b) 0.2
(c) 0.6 (d) 1.0.

9. When a bucket containing water is rotated fast in a vertical circle
of radius R, the water in the bucket doesn’t spill provided
(a) The bucket is whirled with a maximum speed of 2 Rg .

(b) The bucket is whirled around with a minimum speed of 
R
2

g
.

(c) The bucket is having a r.p.m. of n = 2
900

R
g


.

(d) The bucket is having a r.p.m. of n = 2
3600

R
g


.

10. An insect is crawling up on the concave surface of a fixed

hemispherical bowl of radius R. If the coefficient of friction is 
1
3

,

then the height up to which the insect can crawl is nearly
(a) 5% of R (b) 6% of R
(c) 6.5% of R (d) 7.5% of R.
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1. A mass of 1 kg is just able to slide down the slope of an inclined
rough surface when the angle of inclination is 60°. The minimum
force necessary to pull the mass up the inclined plane is
(g = 10 m s–2) is __________ .

2. A block of mass m is resting on a smooth horizontal surface. One
end of a uniform rope of mass (m/3) is fixed to the block, which is
pulled in the horizontal direction by applying a force F at the other
end. The tension in the middle of the rope is __________ .

3. A motor car is moving with a speed of 20 m s–1 on a circular track
of radius 100 m. If its speed is increasing at the rate of 3 m s–1, its
resultant acceleration is __________ .

4. A body of mass 0.05 kg is observed to fall with an acceleration of
9.5 m s–2. The opposing force of air on the body is __________
(g = 9.8 m s–2).

5. A car of mass 1500 kg is moving with a speed of 12.5 m s–1 on a
circular path of radius 20 m on a level road. The value of coefficient
of friction between the tyres and road, so that the car does not
slip, is __________ .

1. Is it possible that a particle moving with constant speed may not
have a constant velocity? If yes, give an example.

2. A stone is rotated in a circle with a string. The string suddenly
breaks. In which direction will the stone move?

3. What is the source of centripetal force in the case of an electron
revolving around the nucleus?

4. What is the effect on the direction of the centripetal force when
the revolving body reverses its direction of motion?

5. Is it correct to say that the banking of roads reduces the wear and
tear of the tyres of automobiles? If yes, explain.

1. A stone tied to the end of a string is whirled in a horizotnal circle.
When the string breaks, the stone flies away tangentially. Why?

2. What is the acceleration of a train travelling at 40 m s–1 as it goes
round a curve of 160 m radius?

3. Is the angular velocity of rotation of hour hand of a watch greater
or smaller than the angular velocity of Earth’s rotation about its
own axis?
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      4. (i) What is the direction of the angular velocity of the minute
hand of a wall-clock?

(ii) When the car takes a turn round a curve, a passenger sitting
in the car tends to slide. To which side does the passenger
slide?

(iii) Comment on the statement ‘sharper the curve, more is the
bending’.

5. Why does a solid sphere have smaller moment of inertia than a
hollow cylinder of same mass and radius, about an axis passing
through their axes of symmetry?

1. A car weighs 1800 kg. The distance between its front and back
axles is 1.8 m. Its centre of gravity is 1.05 m behind the front axle.
Determine the force exerted by the level ground on each front
wheel and each back wheel.

2. Given the moment of inertia of a disc of mass M and radius R
about any of its diameters to be MR2/4, find its moment of inertia
about an axis normal to the disc and passing through a point on
its edge.

3. Torques of equal magnitude are applied to a hollow cylinder and a
solid sphere, both having the same mass and radius. The cylinder
is free to rotate about its standard axis of symmetry, and the
sphere is free to rotate about an axis passing through its centre.
Which of the two will acquire a greater angular speed after a
given time?

4. A solid cylinder of mass 20 kg rotates about its axis with angular
speed 100 rad s–1. The radius of the cylinder is 0.25 m. What is
the kinetic energy associated with the rotation of the cylinder?
What is the magnitude of the angular momentum of the cylinder
about its axis?

5. A child stands at the centre of a turntable with his two arms
outstretched. The turntable is set rotating with an angular speed
of 40 rpm. How much is the angular speed of revolution of the
child if he folds his hands back and thereby reduces his moment

of inertia to 
2
5  times the initial value? Assume that the turntable

rotates without friction.




